三角形外接圆半径公式推导:三角形的面积记作△,三边长分别是a、b、c,外接圆半径为R,那么△=abc/4R;R=abc/4△。因为△=(1/2)ah=(1/2)absinC=(1/2)ab·c/(2R)=abc/4R。
直角三角形的外心(即三边垂直平分线交点)在斜边的中点上,因此直角三角形的外接圆半径就等于斜边的一半。
相关介绍:
与多边形各顶点都相交的圆叫做多边形的外接圆。三角形有外接圆,其他的图形不一定有外接圆。三角形的外接圆圆心是任意两边的垂直平分线的交点。三角形外接圆圆心叫外心。
即做三角形三条边的垂直平分线(两条也可,两线相交确定一点)。
以线段为例可以看作是三角形一边。分别以两个端点为圆心适当长度(相等)为半径做圆(只画出与线段相交的弧即可),再分别以两交点为圆心,等长为半径(保证两圆相交)做圆,过最后的两个圆的两个交点做直线,这条直线垂直且平分这条线段即线段的垂直平分线。
发布评论