1、如果a>0,且a≠1,M>0,N>0.那么:

(1) loga(M·N)=logaM+logaN;(2) logaNM=logaM-logaN;(3) logaMn=nlogaM(n∈R).(4)(n∈R).2、换底公式logab=logcalogcb(a>0,且a≠1;c>0,且c≠1;b>0)对数函数的运算性质的难点:对数的运算性质是建立在底数相同的基础上的,但实际问题中,却经常要遇到底数不相同的情况,碰到这种情形,主要有三种处理的方法:

1、化为指数式对数函数与指数函数互为反函数,它们之间有着密切的关系:logaN=bab=N,因此在处理有关对数问题时,经常将对数式化为指数式来帮助解决。

2、利用换底公式统一底数换底公式可以将底数不同的对数通过换底把底数统一起来,然后再利用同底对数相关的性质求解。

3、利用函数图象函数图象可以将函数的有关性质直观地显现出来,当对数的底数不相同时,可以借助对数函数的图象直观性来理解和寻求解题的思路。