裂项法表达式:

1、/[n(n+1)]=(1)-[1/(n+1)]。

裂项相消公式有n·n!=(n+1)!-n!;1/[n(n+1)]=(1)- [1/(n+1)]等。裂项法求和公式(1)1/[n(n+1)]=(1)- [1/(n+1)](2)1/[(2n-1)(2n+1)]=1/2[1/(2n-1)-1/(2n+1)](3)1/[n(n+1)(n+2)]=1/2{1/[n(n+1)]-1/[(n+1)(n+2)]}(4)1/(√a+√b)=[1/(a-b)](√a-√b)(5)n·n!=(n+1)!-n!(6)1/[n(n+k)]=1/k[1-1/(n+k)](7)1/[√n+√(n+1)]=√(n+1)-√n(8)1/(√n+√n+k)=(1/k)·[√(n+k)-√n]什么是裂项相消法数列的裂项相消法,就是把通项拆分成“两项的差”的形式,使得恰好在求和时能够“抵消”多数的项而剩余少数几项。三大特征:

(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x为任意自然数)的,但是只要将x提取出来即可转化为分子都是1的运算。

(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接” (3)分母上几个因数间的差是一个定值。

(3)分母上几个因数间的差是一个定值。裂差型运算的核心环节是“两两抵消达到简化的目的”。