二次函数的知识点如下:
定义与定义表达式。一般地自变量x和因变量y之间存在如下关系:y=ax²+bx+c(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大),则称y为x的二次函数。
二次函数的三种表达式。一般式:y=ax²+bx+c(a,b,c为常数,a≠0)。顶点式:y=a(x-h)²+k[抛物线的顶点P(h,k)]。交点式:y=a(x-x₁)(x-x₂)[仅限于与x轴有交点A(x₁,0)和B(x₂,0)的抛物线]
在平面直角坐标系中作出二次函数y=x^2的图像,可以看出,二次函数的图像是一条抛物线。抛物线的性质。抛物线是轴对称图形。对称轴为直线x=-b/2a。对称轴与抛物线唯一的交点为抛物线的顶点P。特别地当b=0时,抛物线的对称轴是y轴(即直线x=0)。
抛物线有一个顶点P,坐标为:P(-b/2a,(4ac-b²)/4a)。当-b/2a=0时,P在y轴上;当Δ=b²-4ac=0时,P在x轴上。二次项系数a决定抛物线的开口方向和大小。当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。|a|越大,则抛物线的开口越小。
发布评论